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Abstract. Potentialities of the approach recently proposed in [1, 2] are considered in an application to clus-
ters. The approach makes possible a detailed investigation of particular inherent structures of a many-body
system, including the transition between them. In contrast to the conventional approach, in which the
system is allowed to explore the entire potential energy surface (PES), in this approach it is confined to
a catchment area on the PES, which corresponds to the structures of interest. Illustrations are given for the

Lennard-Jones (LJ) and carbon clusters.

PACS. 36.40.-c Atomic and molecular clusters — 82.20.Wt Computational modelling; simulation

1 Introduction

There has been, in modern science and technology, a trend
toward the consideration of particular structures and chan-
nels of reaction (nanoelectronics, molecular biology, etc.).
At the same time, many-body systems such as clusters typ-
ically possess a large number of inherent structures (ISs),
which present a real challenge for the computer simulation
of specific structures and reactions.

The conventional approach to this problem is a com-
bination of a molecular dynamics (or Monte Carlo) simu-
lation with quenching [3—6]: One allows the system to
explore the entire potential energy surface (PES) and
quenches it at regular intervals in order to find out to which
IS the current point in the phase trajectory of the sys-
tem is related. Accumulating the points for the IS(s) of
interest, one can calculate all equilibrium characteristics
of a particular IS, the transition rates among certain ISs,
etc. However, if the number of ISs is large, the probability
that the system will visit a particular IS is generally small.
Therefore, the system spends its time in investigating all
other ISs rather than the IS(s) concerned. Hence such an
approach becomes too time-consuming, even if possible.

In this paper, we consider an alternative approach to
this problem, which has been proposed recently in our
papers [1,2]. Namely, the system is suggested to be con-
fined to a catchment area on the PES that represents ei-
ther a single catchment basin (potential well) or a set of
connected basins (wells). These two cases correspond to
the investigation of a particular IS and of the transitions
among certain ISs, respectively. Specifically, the approach
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is considered in application to the constant-energy molecu-
lar dynamics (MD) simulation technique.

A key element of this approach is the procedure of re-
versal of the phase trajectory of the system at the bound-
ary of the catchment area. This procedure should allow
the system to reproduce proper behavior in the area and
should be suitable for practical calculations.

Methodologically, the proposed technique is comple-
mentary to the methods developed in [4, 7-10] for studying
PESs for complex systems such as clusters and biomolecules.
The objective of these latter methods is to understand how
the global PES is organized, whereas the intent of the pro-
posed technique is a detailed investigation of local regions
of the PES.

2 The approach

The method of constant-energy MD involves numerical in-
tegration of the coupled Newtonian equations for a set of
atoms interacting through a given potential.

In the conventional approach, the system is allowed to
explore all the PESs accessible to it at the given total en-
ergy. The system is quenched at regular intervals. Each
quench leads to a minimum on the PES, which represents
one of the ISs of the system. Thus, if one knows to which IS
the current phase point in the MD trajectory is related, one
can collect information about the IS(s).

Every IS is characterized by its energy Vy, the normal
mode frequencies v, ..., V3,, and by the order of the point
group h. In the general case of nonlinear atomic configu-
ration, six of the above frequencies (for the translational
and rotational degrees of freedom) are equal to zero, and
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Fig. 1. LJy3; isomers are numbered according to Table 1, and the total energy is counted from the ground-state isomer energy.
(a) Caloric curves for particular isomers (solid circles show the total caloric curve). (b) The absolute fractional densities of states
(the dashed line shows the total density of states). (¢) The relative densities of states (lines) in comparison with the relative

residence times (symbols).

the others are real. Permutational ISs are identified by the
calculation of the distance in configuration space.

In the present approach, the system is confined to
a catchment area on the PES. Specifically, the system is
placed into the area, and the MD run is executed. As in the
case of the conventional approach, the system is quenched
at regular intervals so that it may be determined whether
the system is still in this area or has left it. If the system has
left the area, the trajectory is subjected to reversal at the
boundary of the area.

In our calculations, the boundary of the area was lo-
cated with an accuracy of one time step. For this, the last
checking interval, as the system approached the boundary,
was successively reduced by half until the boundary was
fixed. It should be emphasized that the efficiency of the
procedure of locating the boundary is of secondary impor-
tance for the discussed approach: Even if the checking were
performed at every time step, the advantage over the con-
ventional method would generally still be held since the
system does not leave the catchment area under considera-
tion. Note also that when one finds the system outside the
given catchment area, one knows the basin where the sys-
tem is located. Therefore one knows the ISs for which the
system attempted to leave the given catchment area.

The suggested procedure of reversal [1, 2] involves three
steps: The first step is the change of the signs of the vel-
ocities of all atoms at the point of reversal; this causes the
phase trajectory to be “rejected” to the given area. The
second step is the uniform random scattering of the com-
ponents of atomic velocities within the 3 part of the mean
value of the velocity. This scattering amplifies the effect
of divergency of the phase trajectories, and as a result,
a proper level of stochastization in the system is provided.
We used = 0.4 as a regular value. The last step is a cor-
rection of the integrals of motion of the system (the total
energy and the linear and angular momenta for a free sys-
tem).

At low and moderate energies, until saddles of high
order were involved, the trajectory successfully returned to
the basin every time when the reverse procedure was ap-
plied. However, as the energy increased, not every act of
reversal furnished the desired result: After a few time steps
within the true basin, the trajectory attempted to leave

it again (this typically happened for the saddle regions in
which the number of imaginary frequencies was as large as
ten or higher). As a result, a new act of reversal was exe-
cuted in a short time. Furthermore, at even higher energies,
when the system had a pronounced tendency towards a de-
cay, it happened that the phase trajectory cycled within
a small part of the saddle region: The same sequence of
the basins (but not of the same phase points!) in which
the system was found at quenching repeated many times.
Since such events were rare (one event to several tens of
the attempts at decay), termination of the run was found
reasonable in these cases, specifically if the length of the
sequence exceeded 80; the points obtained prior to this se-
quence were taken into account in the statistics.

The proposed approach has been verified for a set of
the Lennard—Jones (LJ) and carbon clusters by the com-
parison with the conventional approach. Specifically, there
have been comparisons for the distributions of the kinetic
energy and the residence times of the system in the basins,
and for rates of transitions between particular isomers [2].
Note that according to the relation for the density of states
derived in [1], the reproduction of the kinetic energy distri-
butions ensures the reproduction of all equilibrium prop-
erties of particular isomers. All the characteristics were
found to be in good agreement. The only small exception is
the nonphysical enrichment of the distributions of the resi-
dence times at small times (of the order of one tenth of the
vibrational period), an effect whose negative consequences
for the other characteristics, in particular for the transition
rates, have not been perceived.

3 Results and discussion

3.1 Caloric curves for particular isomers

Figure 1a presents the caloric curves for LJ;3, which is the
smallest magic LJ cluster. The cluster executes no over-
all translation and rotation. Numerical values are given
in the LJ units. Shown are the caloric curve (CC) for the
ground-state isomer, the CCs for several excited-state iso-
mers (starting from the lowest one), and the total CC.
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Table 1. Characteristics of the isomers for LJ13. The isomers
are numbered according to their order in the isomer energy spec-
trum (among 1012 isomers found in the course of simula-
tions). 0 labels the ground-state isomer. 7 is the geometrical
mean of the normal frequencies.

Isomers Uy v h
0 —44.326801 1.750316 120
1 —41.471979 1.636509 2
2 —41.444597 1.635673 2
3 —41.394398 1.635996 2
4 —40.758513 1.638231 4
8 —40.670170 1.632131 1
138 —38.975810 1.553827 6

Each of the CCs for particular isomers was obtained by
confinement of the system to one of the basins correspond-
ing to the given isomer. Characteristics of the isomers are
given in Table 1. Figure 1la clearly shows that the CCs for
the excited-state isomers are very similar in appearance,
and that they are remarkably different from the CC for the
ground-state isomer. Moreover, if one counts the total en-
ergy for each of the isomers from its minimum energy, the
CCs for the excited-state isomers follow each other with
a good accuracy, even though the inherent structures of
these isomers are quite different (cf. in particular the point-
group order h, Table 1). A similar picture was observed for
another magic cluster LJs5 and, surprisingly, for the non-
magic cluster LJ14, which, in contrast with LJ;3, has one
floating atom on the closed outer shell. On the other hand,
the calculations conducted for another nonmagic cluster
LJss showed that in this cluster, all the CCs for particu-
lar isomers, both for the ground-state isomer and for the
excited-state ones, are similar to the CCs for the excited-
state isomers in Fig. la. It follows that the form of the
CC for a particular isomer is not completely defined by
its inherent structure (as one could expect) but is also de-
pendent upon the general structure (morphology) of the
cluster. The latter finds its reflection, in particular, in the
isomer energy spectra. To this end, it can be noted that
the first three clusters (LJy3, LJ55, and LJ14) have a simi-
lar isomer energy spectrum, and that this spectrum is quite
distinct from that for LJs3 [11] (in the latter case, there is
no characteristic energy gap between the ground-state iso-
mer and the excited-state ones).

3.2 Absolute fractional densities of states and the
“structural” ergodicity of the system

With the characteristics of a specific isomer (U, 7, and h)
and its CC in hand, the absolute fractional density of states
for this isomer can be calculated [1], in a manner similar
to the calculation of entropy from caloric data in thermo-
dynamics. Figure 1b shows the absolute densities of states
thus calculated from the CCs of Fig. 1a (the total density
of states was calculated from the total CC, as in [1]).
When calculating the density of states from the CC
found by confinement of the system to a catchment basin,
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one deals with just a local region of the PES. This of-
fers a unique opportunity for addressing the fundamen-
tal issue of statistical mechanics: the hypothesis of equal
a priori probabilities, according to which the probability
for the system to visit a given region of the PES is pro-
portional to the fractional density of states corresponding
to this region. Specifically, one can calculate the relative
density of states for any pair of the isomers and then com-
pare this value with the relative residence time for these
isomers found from numerical simulations or experiment.
For most systems, this question will likely be addressed to
the numerical simulations or experiment and not to sta-
tistical mechanics itself, and the positive answer to it will
testify that the numerical simulation or experimental data
are correct. Figure 1c compares the densities of states for
the excited-state isomers from Fig. 1b, which are related
to the density of state for the ground-state isomer, with
the corresponding relative residence times found by direct
counting in the course of the conventional MD simulations.
The agreement among the data, on the one hand, testifies
to a representative sampling in the MD simulations; and on
the other hand, it tells us that the system is “structurally”
ergodic, i.e., it visits the isomers according to their frac-
tional densities of states.

A similar comparison has been performed in [5,6] for
LJ7, but the densities of states were calculated on the ba-
sis of a Monte Carlo sampling of the entire PES. In this
respect, our approach appears to be more rigorous, since
calculation of the density of state for a particular isomer is
a priori based on the local region of the PES.

3.3 Diffusion in the subsystem of the permutational
isomers

It is common that “real” many-body systems are too com-
plex for theoretical study, and clusters are one case. There-
fore it may be useful to consider a subsystem which retains
many of the characteristic properties of the system, yet is
much easier for theoretical consideration. Specifically to
clusters, such a problem arises because of a large num-
ber of geometrically different isomers: The data obtained
in numerical simulations (or experiments) represent some
averages over a variety of the isomers. Because of this, com-
parison of analytical predictions with simulation or experi-
mental data turns out to be a real challenge: On one hand,
consideration of all essentially contributing isomers is im-
practical; on the other hand, introducing some effective
average values of parameters in the theory to account for
different characteristics of the isomers may disguise pos-
sible defects of the theory.

The isomers considered in the previous subsections are,
in fact, the simplest examples of such subsystems. Another,
more sophisticated subsystem is the manifold of the per-
mutational isomers. In contrast to the individual isomers,
kinetic processes are possible in this subsystem, in particu-
lar the process of self-diffusion. To illustrate this case, we
chose the ground-state isomer of the L.J;3, whose permuta-
tional copies are directly connected through the transition
states with U = —41.5552. The MD trajectory was con-
fined to the area of the PES corresponding to the permuta-
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Fig. 2. Self-diffusion in LJ;3. A: the subsystem of the permu-
tational ground-state isomers; +: the system freely exploring all
the PES. All values are given in LJ units.

tional copies of the isomer, and the self-diffusion coefficient
was estimated in the conventional way (as one sixth of
the time derivative of the mean square displacement per
atom). Figure 2 shows this coefficient in comparison with
the self-diffusion coefficient for the whole system. It can
be seen that the behavior of the self-diffusion coefficient in
both cases is similar; this testifies that this simple subsys-
tem can be used as a model system for studying diffusion in
the whole system, which is incomparably complex.

3.4 Estimation of the rate of a complex transition

As has been shown in [2], the rate of transition from one
specific IS to another can be calculated by confinement of
the system to the catchment area corresponding to these
structures. Moreover, it can successfully be estimated in
a more simple and economic way: One confines the system
to the catchment basin for the first IS and counts the num-
ber of the attempts at leaving this basin for the other IS.

Each of these methods can be used to devise an efficient
procedure for estimating the rate of a complex transition
when the initial and terminal ISs are separated by a set of
the intermediate ISs: The system is successively confined
to the catchment areas corresponding to two neighbouring
ISs (starting from the first pair), or, more economically, to
the catchment basins corresponding to the initial and all
the intermediate structures. It is apparent that this pro-
cedure, as compared to a straightforward calculation of
the transition rate (e.g., using the conventional approach),
provides a considerable gain in the computation time. For
example, for the second way of estimation, the gain ob-
tained is on the order of n~2p~", where n is the number
of the intermediate basins, and p is the probability that
the system will leave the basin for the neighbouring basin
concerned.

To illustrate this procedure, we considered a 15-atom
carbon cluster with the atoms bound by the Brenner po-
tential [12] modified in [13] (Fig. 3). The ground-state iso-
mer for this cluster is the ring (Vo = —92.13446V). The
total energy of the system was taken to be £ = —58.95€V,
which corresponds to the temperature T' ~ 8300 K.

Starting from the linear chain isomer (V5=-88.9509 V),
in which the system predominantly resided (because of
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Fig. 3. Schematic picture of estimates of the rates of transition
in the sequence of the C15 isomers. For details, see the text.

a larger conformation entropy as compared to the ring), we
successively confined it to the catchment basins for the ISs
shown in Fig. 3; Vj = —87.4679¢eV and V = —85.3930eV
for the double- and triple-ring structures, respectively. For
each of the basins, the arrows show the probability (the
relative number of the events) that the system will leave
a given structure, and follow a specific channel (p), dissoci-
ate (pq), or transform into the other bound structures (ps).
The rate of the first stage of the process (the chain-to-ring
transformation), which corresponds to p = 0.016, is 5.92 x
101%~1, Then, for example, the rate of the transition from
the linear structure to the triple-ring one can be estimated
by the multiplication of the above rate and the correspond-
ing values of p for two subsequent forward transitions. It is
obtained as 2.1 x 10°s~ . This process is obviously too slow
to be observed in direct simulations.
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